# Submid\_Jurnal\_Vitamin\_B6.docx

**Submission date:** 07-Mar-2018 01:15PM (UTC+0700)

**Submission ID:** 926537842

File name: Submid\_Jurnal\_Vitamin\_B6.docx (267.62K)

Word count: 1822

Character count: 11015

#### ANALISIS VITAMIN B6 (PIRIDOKSIN) PADA SEDIAAN TABLET MULTIVITAMIN NEUROTROPI MENGGUNAKAN SPEKTROFOTOMETRI UV-VIS

## Vevi Maritha STIKES Bhakti Hudasa Mulia Madiun Email: vv.maritha@gmail.com

3

#### ABSTRAK

Analisis vitamin B6 dalam sediaan tablet multivitamin neurotropic membutuhkan metode yang simple, cepat serta efisien biaya. Salah satu metode yang memiliki kriteria tersebut adalah spektrofotometer UV-Vis. Rentan panjang gelombang yang lebar akan mampu mendapatkan panjang gelombang maksimal untuk analisis vitamin B6. Analisis vitamin B6 menggunakan spektrofotometri UV Vis akan berlangsung cepat sehingga mampu menghambat degradasi sehingga hasil analisis yang diperoleh akurat. Pemilihan panjang gelombang maksimal tunggal untuk vitamin B6 akan mampu memisahkan dengan komponen lain yaitu vitamin B1 dan B6 meskipun ketiganya sama-sama larut dalam air. Hal ini juga menunjukkan bahwa analisis vitamin B6 menggunakan spektrofometri UV Vis juga selektif.

Kondisi optimal analisis vitamin B6 pada sampel vitamin neurotropic adalah menggunakan spektrofotometri UV-Vis pada panjang gelombang 325 nm. Pelarut yang digunakan adalah air. Hasil kurva kalibrasi pada seri kadar 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm, 110 ppm, 120 ppm dan 130 ppm memiliki nilai r 0, 9965.

Penetapan kadar vitamin B6 menggunakan sampel sediaan multivitamin neurotropik yang dilakukan pada 3 merk. Kadar teoritis yang diukur adalah 100 ppm, sedangkan perolehan kembali pada sampel multivitamin neurotropic merk A masing-masing adalah 98,24 ppm, 95 ppm dan 95,78 ppm dengan niali standar deviasi (SD) sebesar 1,69. Kadar teoritis vitamin B6 pada sampel multivitamin neurotropik merk B adalah 100 ppm, sedangkan perolehan kembali masing-masing adalah 99 ppm, 102 ppm dan 98 ppm dengan niali standar deviasi (SD) sebesar 1,15. Penetapan kadar vitamin B6 pada multivitamin neurotropic merk C kadar teoritis yang diukur adalah 100 ppm, sedangkan perolehan kembali masing-masing adalah 102 ppm, 101 ppm dan 99 ppm dengan nilai standar deviasi (SD) sebesar 1,53. Perolehan kembali penetapan kadar vitamin B6 telah sesuai dengan persyaratan AOAC, yaitu untuk kadar analit 100 ppm % recoverinya 90-107%. Nilai SD dari ketiga sampel multivitamin neurotropik yang kurang dari 2 menunjukkan bahwa hasil penetapan kadar vitamin B6 dapat diterima. Hasil penelitian ini menunjukkan bahwa vitamin B6 dalam sampel multivitamin neurotropik dapat dianalisis menggunakan spektrofotometri UV-VIS pada panjang gelombang 325 nm menggunakan pelarut air.

Kata kunci: Vitamin B6, Spektrofotometri UV-Vis, multivitamin neurotropik,

#### PENDAHULUAN

Vitamin B6 (piridoksin) diperlukan dalam beberapa proses metabolisme. Tubuh membutuhkan vitamin B6 untuk reaksi lebih dari 100 enzim, perkembangan otak selama masa kehamilan, serta fungsi kekebalan tubuh. Vitamin B6 juga berperan sebagai kofaktor dalam reaksi enzimatis tubuh yang essensial. Pada orang dewasa kebutuhan vitamin B6 adalah 100 mg per hari, sedangkan pada anak usia 1 sampai 3 tahun 30 mg, anak usia 4 sampai 8 tahun 40 mg, anak usia 9 sampai 13 tahun 60 mg dan pada remaja 14 tahun sampai 18 tahun 80 mg per hari. Kekurangan vitamin B6 dapat menyebabkan anemia, ruam kulit, depresi serta system kekebalan tubuh yang lemah. Vitamin B6 sering dikombinasikan dengan vitamin B1 dan B12 sebagai vitamin neurotropi. Kombinasi dengan vitamin B1 dan B12 akan memperbaiki serta mengoptimalkan system syaraf. Hal ini menunjukkan pentingnya asupan vitamin B6 yang cukup pada tubuh (Mooney, et al, 2009 and NIH, 2016).

Analisis vitamin B6 dalam beberapa sampel banyak yang sudah dipublikasikan. Analisis vitamin B6 diantaranya menggunakan HPLC (*High Performance Liquid Chromatography*), GC (*Gass Chromatography*) serta menggunakan FITR. Penggunaan HPLC dalam analisis memiliki beberapa keterbatasan diantaranya optimasi yang memakan waktu cukup lama, pemilihan fase gerak yang cukup rumit serta instrument yang cukup mahal, begitu juga analisis vitamin B6 menggunakan GC maupun FTIR. Kedua instrument ini juga memiliki beberapa kekurangan ketika akan digunakan untuk analisis vitamin B6. GC dan FTIR merupakan metode analisis yang rumit dan membutuhkan preparasi sampel yang lama, sehingga dibutuhkan metode analisis yang simple, cepat serta dengan biaya yang relative murah (Amaro et al, 2014, Vergara, et al, 2005 and Nugrahani, et al, 2016)

Analisis vitamin B6 dalam sediaan tablet multivitamin neurotropic membutuhkan metode yang simple, cepat serta efisien biaya. Salah satu metode yang memiliki kriteria tersebut adalah spektrofotometer UV-Vis. Rentan panjang gelombang yang lebar akan mampu mendapatkan panjang gelombang maksimal untuk analisis vitamin B6. Analisis vitamin B6 menggunakan spektrofotometri UV Vis akan berlangsung cepat sehingga mampu menghambat degradasi sehingga hasil analisis yang diperoleh akurat. Pemilihan panjang gelombang maksimal tunggal untuk vitamin B6 akan mampu memisahkan dengan komponen lain yaitu vitamin B1 dan B6 meskipun ketiganya sama-sama larut dalam air. Hal ini juga menunjukkan bahwa analisis vitamin B6 menggunakan spektrofometri UV Vis juga selektif (Ham, et al, 2012)

#### METODE PENELITIAN

#### Alat:

Alat yang digunakan dalam penelitian ini adalah spektrofotometri UV-Vis, sentrifuse, stirer, labu ukur 10,0 ml, labu ukur 100,0 ml, gelas beaker 100,0 ml, spatula, pipet ukur, kertas whattman dan pipet volum.

#### Bahan:

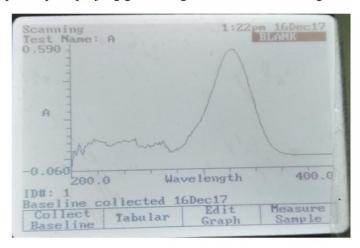
Bahan yang digunakan dalam penelitian ini adalah standar vitamin B6 (piridoksin), aquades serta sampel vitamin neurotropic merk A, vitamin neurotropic merk B dan vitamin neurotropic merk C.

#### Penentuan Panjang Gelombang Maksimum Vitamin B6

Pembuatan baku induk 1000 ppm. Ditimbang 10,0 mg baku vitamin B6 kemudian dilarutkan menggunakan aquades 10,0 ml. Larutan ini distirer kemudian disaring menggunakan kertas whattman. Membuat baku vitamin B6 100 ppm, dengan cara dipipet 1,0 ml dari baku induk dilarutkan dalam 10,0 ml aquades, kemudian digunakan untuk menetapkan panjang gelombang maksimal.

#### Pembuatan Kurva Baku Vitamin B6

Dibuat larutan 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm, 110 ppm, 120 ppm dan 130 ppm dari baku induk 1000 ppm. Kemudian dilihat nilai absorbansinya. Kurva baku dibuat antara seri kadar dengan nilai absorbansi melalui regresi linier.

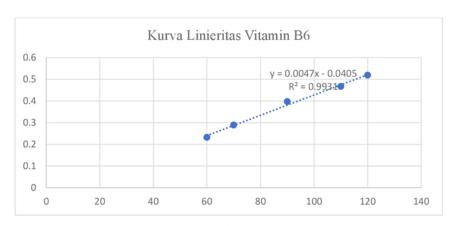

#### Penetapan Kadar Vitamin B6 Dalam Sampel

Penetapan kadar vitamin B6 dalam sampel vitamin neurotropic merk A, B dan C. ditimbang 20 tablet kemudian dihitung bobot rata-ratanya, kemudian dihaluskan. Timbang sampel yang sudah menjadi serbuk sesuai bobot rata-rata tablet. Masukkan dalam labu ukur 100,0 ml tambah aquades sampai batas. Stirer larutan tersebut kemudian sentrifuse. Hasil sentrifuse disaring menggunakan kertas whattman. Ambil 1,0 ml larutan masukkan dalam labu ukur 10,0 ml, ditambah aquades sampai batas. Kemudian dianalisis menggunakan spektrofotometri UV-Vis

pada panjang gelombang maksimal. Catat nilai absorbansinya untuk dihitung kadarnya menggunakan persamaan regresi linier yang diperoleh dari kurva baku.

#### HASIL

Hasil penetapan panjang gelombang maksimal adalah 325 nm dengan nilai absorbansi 0,558. Gambar spektro pada panjang gelombang maksimal adalah sebagai berikut :




Gambar 1. Spektro Vitamin B6 Pada Panjang Gelombang Maksimal

Setelah penentuan panjang gelombang maksimal maka dibuat kurva baku vitamin B6 sebagai berikut :

Tabel 1. Hasil Linieritas Baku Vitamin B6

| Kadar Vitamin B6 (ppm) | Absorbansi |
|------------------------|------------|
| 60                     | 0.232      |
| 70                     | 0.289      |
| 90                     | 0.397      |
| 110                    | 0.467      |
| 120                    | 0.519      |



Gambar 2. Kurva Linieritas Vitamin B6

Penetapan kadar vitamin B6 dalam sampel sediaan tablet multivitamin neurotropic dilakukan sebanyak tiga kali. Hasil perhitungan kadar dalam sampel dapat dilihat pada tabel 2.

Tabel 2. Hasil Penetapan Kadar Vitamin B6 dalam Sampel

|          |             |             | Perolehan |            |      |
|----------|-------------|-------------|-----------|------------|------|
| Sampel   | Replikasi   | Kadar (ppm) | (ppm)     | % Recovery | SD   |
| Sampel A | Replikasi 1 | 100         | 98.24     | 100        | 1.69 |
|          | Replikasi 2 | 100         | 95        | 95         |      |
|          | Replikasi 3 | 100         | 95.78     | 96         |      |
| Sampel B | Replikasi 1 | 100         | 99        | 99         | 1.15 |
|          | Replikasi 2 | 100         | 102       | 102        |      |
|          | Replikasi 3 | 100         | 98        | 98         |      |
| Sampel C | Replikasi 1 | 100         | 102       | 102        | 1.53 |
|          | Replikasi 2 | 100         | 101       | 101        |      |
|          | Replikasi 3 | 100         | 99        | 99         |      |

#### **PEMBAHASAN**

Penggunaan spektrofotometer UV-Vis (Ultra Violet – Visibel) untuk analisis vitamin dan obat telah banyak digunakan, termasuk pada vitamin B6 atau piridoksin. Analisis vitamin B6 menggunakan spektrofotometri UV-Vis adalah suatu metode analisis yang simple. Kelebihan lain dari metode analisis ini adalah cepat, tidak memerlukan biaya yang besar dan mudah dilakukan. Jumlah sampel dan pelarut yang dibutuhkan juga sedikit, namun tetap memberikan hasil yang akurat. Analisis yang cepat akan memberikan efisisensi waktu dalam mengerjakannya. Kemungkinan terjadinya kerusakan vitamin B6 yang dilarutkan pada pelarutnya sebelum dianalisis juga dapat dicegah.

Penentuan panjang gelombang maksimal dilakukan dengan menggunakan standar baku vitamin B6 pada kadar 100 ppm. Pada analisis vitamin B6 menggunakan pelarut air karena piridoksin termasuk vitamin larut air. Pemilihan air sebagai pelarut karena ketersediannya yang melimpah dan mudah didapatkan. Penentuan panjang gelombang maksimal dilakukan dengan melakukan scaning pada panjang gelombang 200 nm – 400 nm. Vitamin B6 memberikan serapan pada daerah UV (Ultra Violet) sehingga untuk analisis menggunakan spektrofotometri serapan dibaca pada panjang gelombang antara 200 nm sampai dengan 400 nm. Panjang gelombang maksimal untuk analisis vitamin B6 adalah 325 nm yang memberikan serapan 0,558 A. Nilai serapan optimum analisis menggunakan spektrofotometri adalah 0,2 sampai 0,8 A, sehingga nilai

serapan saat penentuan panjang gelombang maksimal telah sesuai. Hasil penetapan panjang gelombang maksimal terlihat pada Gambar 1. Panjang gelombang maksimal penetapan kadar vitamin B6 yang telah dipubikasikan adalah 290 nm. Perbedaan ini dimungkinkan karena adanya perbedaan instrument yang digunakan serta perbedaan kondisi laboratorium. Setelah penentuan panjang gelombang maksimal tahapan selanjutnya adalah membuat kurva baku vitamin B6.

Kurva baku vitamin B6 dibuat dengan 5 titik yaitu pada kadar 60 ppm, 70 ppm, 90 ppm, 110 ppm dan 120 ppm. Nilai absorbansi pada masing masing kadar tersebut adalah 0,232A, 0,289A, 0,397A, 0,467A dan 0,519A. Nilai koefisien korelasi (r) sebesar 0,9965. Terlihat bahwa analit memberikan respon yang cukup linier terhadap kadar. Hasil uji linieritas dapat dilihat pada Tabel 1 dan Gambar 2. Setelah uji linieritas selanjutnya metode ini diaplikasikan pada sampel yang mengandung vitamin B6 pada sediaan vitamin neurotropic.

Penetapan kadar vitamin B6 menggunakan sampel sediaan multivitamin neurotropik yang dilakukan pada 3 merk. Hasil penetapan kadar vitamin B6 pada sampel terlihat pada Tabel 2. Sampel yang digunakan adalah multivitamin neurotropic merk A, merk B dan merk C. Pemilihan ketiga merk ini didasarkan atas penggunaannnya yang besar di masyarakat atas dasar penjualannya di apotek. Penetapan kadar vitamin B6 pada multivitamin neurotropic merk A dilakukan replikasi 3 kali. Kadar teoritis yang diukur adalah 100 ppm, sedangkan perolehan kembali masing-masing adalah 98,24 ppm, 95 ppm dan 95,78 ppm. Dari ketiga nilai ini diketahui bahwa niali standar deviasi (SD) sebesar 1,69. Hal ini menunjukkan bahwa hasil penetapan kadar vitamin B6 dalam sampel multivitamin neurotropik merk A dapat diterima. Penetapan kadar vitamin B6 pada multivitamin neurotropik merk B juga dilakukan replikasi 3 kali. Kadar teoritis yang diukur adalah 100 ppm, sedangkan perolehan kembali masing-masing adalah 99 ppm, 102 ppm dan 98 ppm. Dari ketiga nilai ini diketahui bahwa niali standar deviasi (SD) sebesar 1,15. Hal ini menunjukkan bahwa hasil penetapan kadar vitamin B6 dalam sampel multivitamin neurotropik merk B juga dapat diterima. Penetapan kadar vitamin B6 pada multivitamin neurotropic merk C dilakukan replikasi 3 kali. Kadar teoritis yang diukur adalah 100 ppm, sedangkan perolehan kembali masing-masing adalah 102 ppm, 101 ppm dan 99 ppm. Dari ketiga nilai ini diketahui bahwa niali standar deviasi (SD) sebesar 1,53. Perolehan kembali penetapan kadar vitamin B6 telah sesuai dengan persyaratan AOAC, yaitu untuk kadar analit 100 ppm % recoverinya 90-107%. Nilai SD dari ketiga sampel multivitamin neurotropik yang kurang dari 2 menunjukkan bahwa hasil penetapan kadar vitamin B6 dapat diterima. Hasil penelitian ini menunjukkan bahwa vitamin B6 dalam sampel multivitamin neurotropic dapat dianalisis menggunakan spektrofotometri UV-VIS pada panjang gelombang 325 nm menggunakan pelarut air (Nanjing University, 2002 and AOAC, 1998).

#### KESIMPULAN

Vitamin B6 (piridoksin) dalam sampel vitamin neurotropic dapat dianalisis menggunakan Spektrofotometri UV-VIS pada panjang gelombang 325 nm menggunakan pelarut air. Analisis vitamin B6 menggunakan Spektrofotometri UV-VIS merupakan metode analisis yang simple, mudah, efisien biaya serta memerlukan sampel dan pelarut dalam jumlah sedikit.

### Submid\_Jurnal\_Vitamin\_B6.docx

**ORIGINALITY REPORT** 

2%

2%

2%

1%

SIMILARITY INDEX

INTERNET SOURCES

**PUBLICATIONS** 

STUDENT PAPERS

**PRIMARY SOURCES** 

1

www.hcl.com.br

Internet Source

2%

2

repository.ung.ac.id

Internet Source

1%

Exclude quotes

On

Exclude matches

< 15 words

Exclude bibliography

On